USN

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Engineering Mathematics - III

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIXE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series expansion for the periodic function $f(x)$, if in one second $f(x)=\left\{\begin{array}{cc}0 ; & -\pi<x<0 \\ x ; & 0<x<\pi\end{array}\right.$.
(08 Marks)
b. Expand the function $f(x)=x(\pi-x)$ over the interval $(0, \pi)$ in half range Fourier cosine series.
(06 Marks)
c. The following value ©f function y gives the displacement in inches of a certain machine part for rotations x of a flywheel. Expand y -in terms of Fourier series upto the second harmonic.

Rotations	x	0	$\pi / 6$	$2 \pi / 6$	$3 \pi / 6$	$4 \pi / 6$	$5 \pi / 6$	π
Displacement	y	0	9.2	14.4	17.8	17.3	11.7	0

(06 Marks)

OR

2 a. Find the Fourier series expansion for the function
$f(x)=\left\{\begin{array}{cc}\pi x ; & 0 \leq x \leq 1 \\ \pi(2-x) ; & 1 \leq x \leq 2\end{array}\right.$
and deduce $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(08 Marks)
b. Expand in Fourier series $f(x)=(\pi-x)^{2}$ over the interval $0 \leq x \leq 2 \pi$.
(06 Marks)
c. The following table gives the variations of periodic aurrent over a period T.

t (secs)	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
A (Amps)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Expamd the function (periodic current) by Fourier series and show that there is a direct current part of 0.75 aurp and also obtain amplitude of first harmonic.
(06 Marks)

Module-2

3 a. Find Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2} ; & |x|<1 \\ 0 ; & |x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$.
b. Find Fourier Cosine transform of the function :

$$
f(x)=\left\{\begin{array}{cc}
4 x ; & a<x<1 \\
4-x ; & 1<x<4 \\
0 ; & x>4
\end{array}\right.
$$

(06 Marks)
c. Find z-transforms of : i) $a^{n} \sin n \theta$ ii) $a^{-n} \cos n \theta$.
(06 Marks)

OR

4 a. Find Fourier sine transform of $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-|\mathrm{x}|}$ and hence evaluate : $\int_{0}^{\infty} \frac{\mathrm{x} \sin \mathrm{mx}}{1+\mathrm{x}^{2}} \mathrm{dx}, \mathrm{m}>0$.
(08 Marks)
b. Find z-transform of $u_{n}=\cosh \left(\frac{n \pi}{2}+\theta\right)$.
(06 Marks)
c. Solve the difference equation using z -transforms $\mathrm{u}_{\mathrm{n}+2}+6 \mathrm{u}_{\mathrm{n}+1}+8 \mathrm{u}_{\mathrm{n}}=2^{\mathrm{n}}$. Given $\mathrm{u}_{0}=\mathrm{u}_{1}=0$.
(06 Marks)

Module-3

5
a. If θ - is the acute angle detween the two regression lines relating the variables x and y, show that $\operatorname{Tan} \theta=\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}{ }^{2} \sigma_{y}{ }^{2}}\right)$.
(08 Marks) Indicate the significance of the cases $r= \pm 1$ and $r=0$.
b. Fit a straight line $y=a x+b$ for the data.

x	12	15	21	25
y	50	70	100	129

(06 Marks)
c. Find a real root of the equation by using Newton-Raphson method near $x=0.5, \mathrm{xe}^{\mathrm{x}}=2$, perform three iterations.
(06 Marks)

OR

a. Compute the coefficient of correlation and equation of regression of lines for the data :

x	1	z	3	4	5	6	7
y	9	8	10	12	11	13	14

(08 Marks)
b. The Growth of an organism after x - hours is given in the following table :

x (hours)	5	15	20	30	35	40
y (Growth)	10	14	25	40	50	62

Find the best values offa and b in the fornrula $y=a e^{b x}$ to fit this data.
(06 Marks)
c. Find a real root of the equation $\cos x=3 x-1$ correct to three decimals by using Regula False position method, given that røot lies in between 0.6 and 0.7 . Perform three iterations.
(06 Marks)

Module-4

7 a. Find $y(8)$ from $y(1)=24, y(3)=120, y(5)=336, y(7)=720$ by using Newton's backward difference interpolation flormula.
(08 Marks)
b. Define $f(x)$ - as a polynomial in x for the following data using Newton's divided difference formula.
(06 Marks)

x	-4	-1	0	2	5
$\mathrm{f}(\mathrm{x})$	1245	33	5	9	1335

c. Evaluate the integral $I=\int_{0}^{6} \frac{d x}{4 x+5}$ using Simpson's $\frac{1}{3}$ rd rule using 7 ordinates.
(06 Marks)

OR

8 a. For the following data calculate the differences and obtain backward difference interpolation polynomial. Hence find $f(0.35)$.
(08 Marks)

x	0.1	0.2	$\AA .3$	0.4	0.5
$\mathrm{f}(\mathrm{x})$	1.40	1.56	1.76	2.0	2.28

b. Using Lagrange's interpolation find y when $\mathrm{x}=10$.

x	5	6	9	11
y	12	13	14	16

(06 Marks)
c. Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} d x$ by WWeddle's rule considering seven ordinates.
(06 Marks)

Module-5

9 a. Verify the Green's theorem in the plane for $\int_{c}\left(x^{2}+y^{2}\right) d x+3 x^{2} y$ dy where C - is the circle $x^{2}+y^{2}=4$ traced in positive sense.
(08 Marks)
b. Evaluate $\int_{\mathrm{C}}(\sin z . d x-\cos x d y+\sin y d x)$ by using Stokes theorem, whers C - is the boundary of the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1$ and $z=3$.
(06 Marks)
c. Find the curve on which the functional $\int_{\mathbb{C}}\left[y^{\prime 2}+12 x y\right] d x$ with $y(0)=0, y(1)=1$ can be extremised.
(06 Marks)

OR

10 a. Given $\mathrm{f}=\left(3 \mathrm{x}^{2}-\mathrm{y}\right) \mathrm{i}+\mathrm{xz} \mathbf{i}+(\mathrm{yz}-\mathrm{x}) \mathrm{k}$ evaluate $\int_{\mathrm{c}} \mathrm{f} \cdot \mathrm{dr}$ from $(0,0,0)$ to $(1,1,1)$ along the paths $x=t, y=t^{2}$ and $z=t^{3}$.
(08 Marks)
B. Derive Euler's equation in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
(06 Marks)
c. Prove that the shortest distance between two points in a plane is a straight line.
(06 Marks)

G8ç scrlem

USN

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Electric Circuit Analysis

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, ahoosing one full question from each module.
Important Note : 1 . On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module- 1

1 a. Find an equivalent resistance between A and B for the network given in Fig. Q1 (a) using star-delta transformation.

Fig. Q1 (a)
b. Find the currents i_{1}, i_{2} and i_{3} in the network given in Fig.Q1 (b) using mesh analysis.
(06 Marks)

Fig. Q1 (b)
c. Find the power dissipated in 10Ω resistar by nodal analysis in Fig. Q1 (c).
(08 Marks)

Fig. Q1 (c)
OR
2 a. Distinguish betwreen (i) Active and Fassive elements (ii) Ideal and practical sources.
(04 Marks)
b. Find the node yoltage V_{1}, V_{2} and V_{3} in the circuit diagram shown in Fig. Q2 (b) using nodal analysis.
(08 Marks)

Fig. Q2 (b)
c. Find the current i_{a} in the circuit given in Fig. Q2 (c) using mesh analysis.
(08 Marks)

Fig. Q2 (c)

Module-2

3 a. State and explain super position theorem.
(06 Marks)
b. Find the Thevenin's voltage, short circuit current and determine the actual current flowing through the 6Ω resistor in the network given in Fig. Q3 (b).
(07 Marks)

Fig. Q3 (b)
c. Find the current through 16Ω resistor in the network given in Fig. Q3 (c) using Norton's thearem.
(07 Marks)

Fig. Q3 (c)
OR
4 a. Verify the reciprocity theorem for the voltage V and current I in the network given in Fig. Q4 (a).
(08 Marks)

Fig. Q4 (a)
b. Find the walue of load resistance R_{L} when maximum power is transferred across it in the network shown in Fig. Q4 (b).
(04 Marks)

Fig. Q4 (b)
2 of 4
c. Find the current through R_{L} using Thevenin's theorem for the network in the Fig. Q4 (c).
(08 Marks)

Hig. Q4 (c)

Module-3

5 a. Derive expression for resonant frequency in series RLC circuit.
(06 Marks)
b. A series RLC circuit has $\mathrm{R}=4 \Omega, \mathrm{~L}=1 \mathrm{mH}$ and $\mathrm{C}=10 \mu \mathrm{~F}$. Calculate Q factor, bandwidth, resonant frequency and half power frequencies.
(08 Marks)
c. Find the equation of current if the switch is closed at $t=0$. Find also the voltage across L and R, the current at $t=0.1 \mathrm{sec}$ and the time at which the voltage across L and R are equal in the Fig. Q5 (c).
(06 Marks)

Fig. Q5 (c)
OR
6 a. Find $\mathrm{I}_{\mathrm{o}}, \mathrm{t}_{\mathrm{C}}, \mathrm{I}_{\mathrm{L}}, \mathrm{Q}$ factor, resonant frequency and parallel resonance for the parallel resonant circuit shown in Fig. Q6 (a).
(08 Marks)

Ifig. Q6 (a)
b. In the Fig. Q© (b), the switch S is olosed at $\mathrm{t}=0$, find the time when the current from the battery reaohes to 500 mA .
(08 Marks)

Fig. Q6 (b)
a. What are the initial conditions and their use in network analysis?
(04 Marks)

Module-4

7 a. State and prove initial value theorem and final value theorem.
(08 Marks)
b. Find the Iaplace transform of the, (i) $f(t)=5+4 e^{-2 t}$
(ii) $\mathrm{e}^{-a t} \sin \omega t$
(04 Marks)
c. Obtain the Laplace transform of the function shown in Fig.Q 7(c).
(08 Marks)

Fig. Q7 (c)

8 a. Find the inverse Laplace transform,
(i) $\frac{\mathrm{s}^{2}+5}{\mathrm{~s}\left(\mathrm{~s}^{2}+4 \mathrm{~s}+4\right)}$
(ii) $\frac{2 \mathrm{~s}+6}{\mathrm{~s}^{2}+6 \mathrm{~s}+25}$
(06 Marks)
b. Obtain Laplace transform of,
(i) $\quad \mathrm{f}(\mathrm{t})=5(\mathrm{t}-2) \mathrm{u}(\mathrm{t}-1)$
(ii) $\mathrm{f}(\mathrm{t})=4 \mathrm{e}^{-3 \mathrm{t}}[\mathrm{u}(\mathrm{t}+2)-\mathrm{u}(\mathrm{t}-2)]$
(iii) $\delta(\mathrm{t})$
(iv) $u(t)$
c. Sketch the waveforms,
(i) $\mathrm{tu}(\mathrm{t}-\mathrm{T})$
(ii) $(\mathrm{t}-\mathrm{T}) \mathrm{u}(\mathrm{t}-\mathrm{T})$
(iii) $\mathrm{u}(-\mathrm{t})$
(iv) $\mathrm{tu}(\mathrm{t}+\mathrm{T})$
(06 Marks)

Modules

9 a. Determine the line currents and total power supplied to a delta connected load of $\mathrm{Z}_{\mathrm{ab}}=10 \angle 60^{\circ} \Omega, \mathrm{Z}_{\mathrm{bc}}=20 \angle 90^{\circ} \Omega$ and $\mathrm{Z}_{\mathrm{ca}}=25 \angle 30^{\circ} \Omega$. Assume a 3 phase, $400 \mathrm{~V}, \mathrm{ABC}$ system.
b. Define Z and Y parameters.
(08 Marks)
c. Find the Z parameters of the network shown in Fig. Q9 (c).
(08 Marks)

Fig. (19 (c)
$\mathrm{O} \mathbb{R}$
a. Determine the line currents in an unbalanced star connected load supplied from a symmetrical 3 phase, 440 V system. The branch impedance are $Z_{R}=4 \angle 30^{\circ} \Omega$, $Z_{Y}=10 \angle 45^{\circ} \Omega$ and $Z_{B}=10 \angle 60^{\circ} \Omega$. The phase sequence is RYB.
b. Find Y-parameters for the network shown in Fig. Q10 (b)

Fig. Q10 (b)
c. Write the conditions for symmetry and reciprocity of Z and Y parameters of a two port network.
(04 Marks)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Transformers and Generators

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, cloosing ONE full question from each module.

Module-1

1 a. Draw and explain the full load phasor diagrams of 1ϕ transformers for lagging leading and upf load.
(07 Marks)
b. How all day efficiency is different from standard efficiency? Briefly explain. (06 Marks)
c. A $5 \mathrm{KVA} 200 / 1000 \mathrm{~V}, 5 \mathrm{OHz}, 1 \phi$ transformer gave the following test results:

OC Test (LV side) : $200 \mathrm{~V}, 1.2 \mathrm{~A}, 90 \mathrm{~W}$
SC Test (HV side) : 50V, 5A, 110 W
i) Calculate the parameters of the equivalent circuit referred to the LV side.
ii) Calculate the output secondary valtage

When delivering 3 kW at 0.8 pf lagging, the input primary voltage being 200 V . Find the percentage regulation also.
(07 Marks)

OR

2 a. Enumerate the advantages of $\mathbf{3} \boldsymbol{\beta}$ transformers compare to 1ϕ transformers. (06 Marks)
b. Show that open Delta commection of 3ϕ transformers has KVA rating of 57.7% of that of $\Delta-\Delta$ connection. Show the connection diagram. (07 Marks)
c. Two 1ϕ furnaces working at 100 V are connected to $3300 \mathrm{~V}, 3 \phi$ mains through Scott connected transformmers. Calculate the current in each line of the 3ϕ mains when the power taken by each funnace is 400 kW at a pff of 0.8 lagging Neglect lossess in the transformers.
(07 Marks)

Module-2

3 a. What are the conditions to be satisfied for parallel operation of two transformers? Explain brieflly.
(06 Marks)
b. Derive expression for load shared between two transformers connected in parallel when voltage ratios are different.
(07 Marks)
a. Explain how stabilization is achieved due to the tertiary winding.
(07 Marks)

OR

4 a. With the help of sketches explain the working of on load tap changer.
(07 Marks)
b. Derive expression for saving of copper in auto transformer compared to two winding transformer.
(07 Marks)
c. Two 1ϕ transformers with equal turns have impedances of $(0.5+\mathrm{j} 3) \Omega$ and $(0.6+\mathrm{j} 10) \Omega$ with respect to the secondary. If they operate in parallel, determine how they will share a total load of 100 kW at pf 0.8 lagging.
(06 Marks)

Module-3

5 a. Write a short note on Noise in transformers.
(06 Marks)
b. Explain the methods used to reduce harmonics in 3ϕ alternators.
(06 Marks)
c. What is commutation? What are the methods awailable for improving commutation? Explain briefly.
(08 Marks)

©R

6 a. Derive EMF equation of an 3ϕ Alternator.
(06 Marks)
b. What is an armature reaction? With a neat diagram, explain armature reaction in DC machine under normal working conditions.
(08 Marks)
c. With a vector diagram, explaim synchronous reactance of an alternator.
(06 Marks)

Module-4

7 a. Define voltage regulation of an alternator and explain its significance with a vector diagram.
(06 Marks)
b. What is synchronization of alternators? What are the conditions for proper synchronization of an alternator? How 3ϕ alternators are synchronized?
(08 Marks)
c. Write a short notes on power angle characteristics of an alternator.
(06 Marks)

OR

8 a. With a neat circuit diagram, explain slip test to detarmine direct axis reactance and quadrature axis reactance of an salient pole synchrorors Generator.
(07 Marks)
b. Explain the behaviour of symchronous generator on no load undar variable excitation connected to infinite bus bar.
(06 Marks)
c. With a phasor diagram, explain the conceft of two reaction theory in a salient pole alternator.
(07 Marks)

Module-5

9 a. Enumerate the methods availabla for determining the woltage regulation of an alternator, explain mmff methods in detail.
(10 Marks)
b. A 3.5 NVA, Y - connected alternator rated at 4160 V at 50 Hz has the OCC given by the following data :

I_{f} ir amps	50	$\overline{000}$	150	$2 \emptyset 0$	250	300	350	400	450
$\mathrm{~V}_{\text {oc }}$ (line) in volts	1620	3150	4160	4750	5130	5370	5550	5650	5750

a field current of 200 A is found necessary to circulate I_{FL} on SC of the alternator. Calculate by i) EMF method ii) MMF method. The voltage regulation at full load 0.8 pf lagging. Neglect resistance, comment on result obtained.
(10 Marks)

OR

10 a. Write a nate on capability aurwes of synchronous generator.
(06 Marks)
b. What is hunting in synchronous machines? Explain the role of damper winding.
(07 Marks)
c. Explain ZPF method af predetermination of regulation of alternator.
(07 Marks)

USN

17EE34
Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Analog Electronic Circuits

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, cloosing ONE full question from each module.

Module-1

1 a. Draw a double ended clipper circuit and explain its working principle with transfer characteristics.
(07 Marks)
b. Draw and explain the workirg of clamper circuit which alamps the positive peak of a signal to zero.
(07 Marks)
c. With suitable graph, explain the significance of operating point.
(06 Marks)

OR

2 a. Derive the expression for stability factor for fixed bias circuit, with respect to $I_{C O}, V_{B E}$ and β.
(07 Marks)
b. A voltage divider biased circuit has $\mathrm{R}_{\mathrm{l}}=39 \mathrm{k} \Omega, \mathrm{R}_{2}=82 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{c}}=3.3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=1 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$. The Silicon transistor used has $\beta=120$. Find Q -point and stability factor.
(08 Marks)
c. Caloulate the Q point values (I_{c} and V_{CE}) for the circuit given in Fig Q 2(c).
(05 Marks)

Fig Q2(c)

Module-2

3 a. State and prove Millers theorem.
(08 Marks)
b. Starting from fundamentals define h-parameters and obtain an h-parameter equivalent circuit of common emitter configuration.
(08 Marks)
c. Compare the characteristics of CB, CE and CC configurations.
(04 Marks)

4 a. Derive an expression far input impedance volt gain, current gain and output impedance for an emitter follower cincuit using h -parametesr model for the transistor.
(08 Marks)
b. For the transistor connected in CE configuration, determine A_{v}, A_{l}, R_{1} and R_{0} using complete hybrid equivalent model.
Given $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{s}=}=1 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{ie}}=1 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{re}}=2 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=100$ and $\mathrm{h}_{\mathrm{oc}}=20 \mu \mathrm{~A} / \mathrm{V}$
(08 Marks)
c. A transistor in CE mode has h-parameters
$\mathrm{h}_{\mathrm{ie}}=1.1 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{re}}=2 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=100$ and $\mathrm{h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$. Determine the equivalent CB parameters.
(04 Marks)

Module-3

5 a. Draw the circuit of Darlington emitter follower. Derive the expression for current gain using its ac equivalent circuit.
(08 Marks)
b. What are the advantages of negative feedback in amplifiers? Explain briefly.
(06 Marks)
c. For the voltage series feedback amplifier, derive an expression for output impedance.
(06 Marks)

OR

6 a. Explain the need of cascading amplifier. Dnaw and explain the block diagram of two stage cascade amplifier.
(08 Marks)
b. A given amplifier arrangement has the following voltage gains $A_{V_{1}}=10 \quad A_{V_{2}}=20$
and $A_{V_{3}}=40$. Calculate the overall voltage gain and determine the total voltage gain in dBs.
(06 Marks)
c. An amplifier with negative feedback has a voltage gain of 120 . It is found that without feedback an input signal of 60 mV is required to produce a particular output, whereas with feedback the input signal must be 0.5 V to get the same output. Find voltage gain $\left(\mathrm{A}_{\mathrm{V}}\right)$ and β of the amplifier.
(06 Marks)

Module-4

7 a. Derive an expression for frequency of oscillations in Wien bridge' oscillator.
(08 Marks)
b. Explain the operation of class B push pull amplifier. Prove that the maximum efficiency of class B configuration is 78.5%.
(08 Marks)
c. A crystal has following parameters. $\amalg=0.3344 \mathrm{H}, \mathrm{C}=0.065 \mathrm{pF}, \mathrm{C}_{\mathrm{m}}=1 \mathrm{pF}$ and $\mathrm{R}=5.5 \mathrm{k} \Omega$. Calculate: i) Series resonance frequency ii) Parallel resonance frequency.
(04 Marks)

OR

8 a. Explain the operation of class A transformer coupled power amplifier and prove that the maximum efficiency is 50%.
(08 Marks)
b. A class B push pull amplifier operating with $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V}$ provides a 22 V peak signal to 8Ω load. Calculate circuit efficiency and power dissipated per transistor.
(06 Marks)
c. Explain the principle of operation of oscillator and the effect of loop gain $(A \beta)$ on the output of oscillator.
(06 Marks)

Module-5

9 a. With the help of neat diagram, explain the working and aharacteristics of N-channel JFET.
(08 Marks)
b. Determine $Z_{l}, Z o$ and A_{v} for JFET common source amplifier with fixed bais configuration using AC equivalent small signal model.
(08 Marks)
c. Write down the differences between BJT and JHET.

```
(04 Marks)
```


OR

10 a. With the help of neat diagrams, explain the construction, working and characteristics of N -channel deplation type MOSFET.
(10 Marks)
b. Write down the differences between MOSFET and JFET.
(04 Marks)
c. For the ciraut given in the Fig Q10(c), determine: i) Input impedance ii) Output impedance and iii) woltage gain.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Digital System Design

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define canonical minterm form and canonical maxterm form.
(05 Marks)
b. Compare between prime implicant and essential prime implecant. Indentify all the prime implecants and essential prime implecants of the following functions using k-map : $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\pi_{\mathrm{M}}(0,2,3,8,9,10,12,14)$.
(07 Marks)
c. Simplify the following boolean function using k-map, and implement by logic gates.
$f(A, B, C, D, E)=\sum_{m}(3,7,10,11,12,13,14,15,17,19,21,23,25,27,28,29,31)+$ $\sum_{\mathrm{d}}(2,6,26,30)$
(08 Marks)

OR

2 a. Convert the given boolean function into minterm canonical form.
$f(a, b, c)=(\bar{a}+b)(b+\bar{c})$.
(05 Marks)
b. Simplify the following boolean fucntion using k-map
$f(P, Q, R, S)=\sum_{m}(0,2,4,5,6,8,10,15)+\sum_{d}(7,13,14)$.
(07 Marks)
c. Using Quine - McCluskey method, obtain a minimal SOP expression for
$f(a, b, c, d)=\sum_{m}(2,3,4,5,13,15)+\sum_{d}(8,9,10,11)$.
(08 Marks)

Module-2

3 a. Design two bit magnitude comparator and draw the logic diagram.
(10 Marks)
b. Write a short note on encoders.
(05 Marks)
c. Design full adder using two numbers of $4: 1$ MUX.

4 a. Explain look ahead carry adder.
(10 Marks)
b. Implement following multiple output function using IC74138 and external gates. (05 Marks) $F_{1}(A, B, C)=\sum_{m}(1,4,5,7)$ and $F_{2}(A, B, C)=\pi_{m}(2,3,6,7)$.
c. Design 16:1 multiplexer using 8:1 MUX.
(05 Marks)

Module-3

5 a. Explain the working of master slave JK flip-flops with functional table and timing diagram. Show how race around condition is overcome.
(08 Marks)
b. Obtain characteristic equation of SR flip-flop. (05 Marks)
c. Explain working of 3-bit binary ripple counter with the suitable logic and timing diagram.
(07 Marks)

OR

6 a. Convert JK flip-flop to D flip flop.
(05 Marks)
b. Explain the 4 modes of operation of shift register with suitable logic diagram and truth table.
(08 Marks)
c. Design MOD -6 synchronous counter using D flip-flop.
(07 Marks)

Module-4

7 a. Analyze the following sequential circuit given in Fig Q7(a) and obtain excitation, transition and state table. Also write the state diagram.

Fig Q7(a)
(12 Marks)
b. Design a synchronous counter with the sequence $0,1,3,7,6,4,0$ JK flip-flop.
(08 Marks)
OR
8 a. Design a clocked sequential circuit that operates according to the state diagram shown in Fig Q8 (a) implement the circuit using D flip flop.

Fig Q8(a)
(12 Marks)
b. With the help of block diagram explain Mealy and Moore model in a sequential circuit analysis. Give the example circuits.
(08 Marks)

Module-5

9 a. Write the comparison between VHDL and verilog.
(08 Marks)
b. Explain the various data types available in VHDL.
(06 Marks)
c. Write HDL code of a 2×1 multiplexer - VHDL.

OR

10 a. Write a data flow description for a full adder with active high enable in both VHDL and verilog.
b. Explain shift and rotate operators in HDL with an example.
c. Explain the structure of verilog module.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
 Electrical and Electronic Measurements

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. List the limitations of wheatstone Bridge and explain how low resistance is measured by KDB.
(08 Marks)
b. With a neat circuit diagram derive the balancing equiaton for Maxwell Inductance Capacitance Bridge.
(06 Marks)
c. A Maxwell's capacitance bridge shown in Fig Q1(c) is used to measured an unknown inductance in comparison with capacitance. The various values at balance, $\mathrm{R}_{2}=400 \Omega$; $R_{3}=600 \Omega, R_{4}=1000 \Omega ; C_{4}=0.5 \mu \mathrm{~F}$. Calculate the values of R_{1} and L_{1} calculate also the value of storage (Q) factor of coil if frequency is 1000 Hz .
(06 Marks)

OR

2 a. Explain in brief fall of potential method for earth resistance measurement.
(08 Marks)
b. Describe the working of Schering bridge. Derive the equation for capacitance and dissipation factor. Draw the phasor diagram of the bridge under balance conditions.
(12 Marks)

Module-2

3 a. Explain the construction and working principle of electrodynamometer Wattmeter for the measurement of power in the circuit.
(08 Marks)
b. Discuss the constructional features and working principle of rotating type phase sequence indicator.
(06 Marks)
c. A three phase induction motor draws a power input at a voltage of $250 \mathrm{~V}, 20 \mathrm{~A}$, and 0.8 power factor lag: Find percentage error in wattmeter reading if,
i) Pressure coil is on supply side
ii) Current coil is on supply side. Assume current coil resistance and pressure coil resistance $=0.2 \Omega$ and 5000Ω.
(06 Marks)

OR

4 a. Explain the error in a LPF Wattmeter and give the adjustments done to compensate for the error.
(08 Marks)
b. Explain the working principle of Weston frequency meter.
(06 Marks)
c. A 250 V , single phase energy meter has a constant load of 5 A passing through it for 8 hours at 0.8 pf. If the disc makes 3200 revolutions during this period, what is Energy meter constant in revolutions per kilo-watt-hour? Calculate the pf of the load, if the number of revolutions made by the energy meter is 600 , when operating at $250 \mathrm{~V}, 6 \mathrm{~A}$ for 2 hrs .
(06 Marks)

Module-3

5 a. Explain the construction and theory of instrument transformer.
(06 Marks)
b. Explain the characteristics of current transformer.
(08 Marks)
c. Explain the measurement of magnetizing force (H).

OR

6 a. What is shunt? How it is used to extend the range of an ammeter.
(06 Marks)
b. With neat circuit diagram, explain Silsbee's method of testing C.T.
c. Explain the measurement of leakage factor using search coil.

Module-4

7 a. With a block diagram, explain the working of a true R.M.S responding voltmeter. (08 Marks)
b. With a block diagram, explain the working of a Ramp type DVM.
(08 Marks)
c. List the advantages of electronic energy meter over the conventional energy meter.(04 Marks)

OR

8 a. List the performance characteristics of a Digital voltmeter.
(07 Marks)
b. With a neat sketch, explain the working of the Q-meter.
(07 Marks)
c. With a neat block diagram, explain the principle of working of electronic energy meter.
(06 Marks)

Module-5

9 a. Explain LED and LCD displays.
(10 Marks)
b. Write short note on nixie tube.
(05 Marks)
c. Write a short note on strip-chart recorder.
(05 Marks)

OR

10 a. Write a short note on types of segment displays.
(06 Marks)
b. With a neat sketch, explain the working of a X-Y recorder.
(08 Marks)
c. Write a short note on Null balance recorders.
(06 Marks)

USN

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Constitution of India, Professional Ethics and Human Rights (CPH)

(COMMON TO ALL BRANCHES)
Time: 2 hrs .]
[Max. Marks: 30

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the OMR sheets are strictly prohibited.
6. Good works mean
a) Superior work done with great care and skill
b) Responsible work
c) Work above and beyond the call of duty
d) Work involving high risk.
7. Engineering profession is considered to be like a building, its foundation is
a) Hard and sincere work
b) Expert engineering knowledge and skill
c) Sound common sense and expert knowledge
d) Honesty
8. In engineering research work, cooking means
a) Boiling under pressure
b) Retaining only those results which fit the theory
c) Making deceptive statements
d) Misleading the public about the quality of the product
9. Engineering Ethics is a
a) Preventive ethics
b) Natural ethics
c) Technical ethics
d) Scientifically developed ethics
10. The author of a book retains the copy right for \qquad after his or her death.
a) 20 years
b) 30 years
c) 60 years
d) 10 years
11. The public is put to increased risk by allowing increased number of deviations from specified standards of safety and acceptable risk is known as
a) Normal accident
b) Normalizing deviance
c) Risk assessment
d) Overestimated risk.
12. The Election Commission of India does not conduct election to
a) The Parliament
b) The office of the President
c) The post of Prime Minister
d) The office of the Vice President
13. What is the tenure of the Chief Election Commissioner and other election commissioners?
a) 3 years or upto 62 years of age
b) 5 years or upto 65 years of age
c) 6 years or upto 65 years of age
d) 5 years or upto 70 years of age
14. The procedure for amending the Indian Constitution is detailed under
a) Art. 356
b) Art. 360
c) Art. 366
d) Art. 368
15. Art. 21 A - Right to Education as a Fundamental Right was added to the Indian
constitution by
a) $61{ }^{\text {st }}$ Constitution Amendment
b) $74^{\text {th }}$ Constitution Amendment
c) $86^{\text {th }}$ Constitution Amendment
d) $91^{\text {st }}$ Constitution Amendment
16. When the State Emergency is in operation, the President cannot interfere in the matters of
a) State Judiciary
b) State Executive
c) State Legislature
d) All of these.
17. While Proclamation of National Emergency is in operation, the President cannot suspend certain Fundamental Rights. These are
a) Art. 14 and Art. 15
b) Art. 14 and Art. 16
c) Art. 20 and Art. 21
d) Art. 32
18. B. P. Mandal commission appointed in 1978 by the President of India dealt with
a) Rights of the minority
b) Laws relating to child labour
c) Laws relating to sexual harassment at work places

19. Who are considered to be vulnerable group?
a) Women and children
b) Scheduled Caste people
c) Scheduled Tribe people
d) All of these
20. Who can be appointed as the Chairman of the National Human Rights Commission?
a) Any sitting judge of the Supreme Court
b) Any retired Chief Justice of the Supreme Court
c) Any person appointed by the President
d) Retired Chief Justice of any High Court
21. National Human Rights commission is a
a) Statutory body
b) Constitutional body
c) Multilateral Institution
d) Both (a) and (c)
22. Powers, authority and responsibilities of Municipalities have been provided under
a) Article 243 N
b) Article 243 W
c) Article 243 M
d) None of these
23. Which among the following is considered as the training ground for the development of democratic institutions?
a) Nagar Panchayats
b) Municipalities
c) Municipal Corporations
d) Gram Panchayats
24. The ground for the impeachment of President is
a) Failure to follow the advice given by the Prime Minister
b) Unable to discharge his duties due to old age
c) Violation of the constitution
d) Misbehaviour with foreign dignitaries.
25. The size of the Union council of ministers including Prime Minister shall not be more than
\qquad percent of the members strength of Lok Sabha.
a) 10
b) 15
c) 18
d) 20
26. The total number of elected members from various states in Lok Sabha are
a) 530
b) 540
c) 550
d) 500
27. This is not the jurisdiction of the Supreme Court.
a) Original Jurisdiction
b) Emergency Jurisdiction
c) Appellate Jurisdiction
d) Advisory Jurisdiction.
28. Collective responsibility of the State Council of Ministers means, all Ministers are collectively responsible to the
a) Chief Minister
b) Governor
c) State Legislative Council
d) State Legislative Assembly.
29. The Governor may resign his office by writing to
a) The Prime Minister
b) The President
c) The Chief Justice of High Court
d) The Chief Minister of the State
30. The constitution of India derives its authority from the
a) Parliament of India
b) Supreme Court of India
c) People of India
d) Constituent Assembly of India
31. It is not the objective enshrined in the preamble
a) Equality of status
b) Secure shelter and proper livelihood to all
c) Liberty of thought and expression
d) Social, economic and political justice
32. Right of decent environment includes
a) Freedom to reside in any part of India.
b) Right to religion
c) Right to equal protection of law.
d) Right to life.
33. The Emergency provisions incorporated in the Constitution of India were influenced by
the Constitution of
a) German Reich
b) U.S.A
c) Russia
d) Canada
34. The Directive Principles of State Policy directs the State to secure to all workers
a) Minimum wages
b) Fair wages
c) Living wages
d) Standard wages
35. This is not a fundamental duty.
a) To defend the country
b) To abjure violence
c) To uphold and protect sovereignty of India
d) To make scientific improvement

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Additional Mathematics - I

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Prove that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{\mathrm{n} \theta}{2}\right) \quad$ (08 Marks)
b. Express $\sqrt{3}+\mathrm{i}$ in the polar form and hence find its modulus and amplitude. (06 Marks)
c. Find the sine of the angle between vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+2 \hat{k} \quad$ (06 Marks)

OR

2 a. Express $\frac{3+4 \mathrm{i}}{3-4 \mathrm{i}}$ in the form $\mathrm{x}+\mathrm{iy}$.
(08 Marks)
b. If the vector $2 \hat{i}+\lambda \hat{j}+\hat{k}=0$ and $4 \hat{i}-2 \hat{j}-2 \hat{k}$ are perpendicular to each other, find λ.
c. Find λ, such that the vectors $2 \hat{i}-\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}, 3 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$ are coplanar.

Module-2

3 a. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$
(08 Marks)
b. With usual notations, prove that $\tan \phi=\frac{\mathrm{d} \theta}{\mathrm{dr}}$.
(06 Marks)
c. If $u=\log _{e} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$.
(06 Marks)

OR
4 a. Using Maclaurin's series, expand $\tan x$ upto the term containing x^{5}. (08 Marks)
b. Find the pedal equation of $r=a(1-\cos \theta)$.
(06 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z$ and $w=2 z^{2}-x y$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(06 Marks)

Module-3

5 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$
(06 Marks)
c. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$
(06 Marks)

OR

6 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$
(06 Marks)
c. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$
(06 Marks)

7 a. A particle moves along the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}$ and $\mathrm{z}=3 \mathrm{t}-5$, where ' t ' is the time. Find its velocity and acceleration vectors and also magnitude of velocity and acceleration at $\mathrm{t}=1$.
(08 Marks)
b. In which direction of the directional derivative of $x^{2} y z^{3}$ is maximum at $(2,1,-1)$ and find the magnitude of this maximum.
(06 Marks)
c. Show that $\vec{F}=(y+z) \hat{i}+(x+z) \hat{j}+(x+y) \hat{k}$ is irrotational.
(06 Marks)

OR

8 a. If $\phi=x y^{2} z^{3}-x^{3} y^{2} z$, find $\nabla \phi$ and $|\nabla \phi|$ at $(1,-1,1)$.
(08 Marks)
b. If $\vec{F}=(x+y+1) \hat{i}+\hat{j}-(x+y) \hat{k}$, show that $\vec{F} . \operatorname{Curl} \vec{F}=0$.
(06 Marks)
c. If $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$ represents the parametric equation of a curve, find the angle between the tangents at $t=1$ and $t=2$.
(06 Marks)

Module-5

9 a. Solve : $\left(x \tan \frac{y}{x}-\frac{y}{x} \sec ^{2} \frac{y}{x}\right) d x=x \sec ^{2} \frac{y}{x} d y$
(08 Marks)
b. Solve : $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
(06 Marks)
c. Solve : $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$
(06 Marks)

OR
10 a. Solve : $(3 y+2 x+4) d x-(4 x+6 y+5) d y=0$
(08 Marks)
b. Solve : $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
(06 Marks)
c. Solve : $(y \log y) d x+(x-\log y) d y=0$.

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Third Semester B．E．Degree Examination，Dec．2018／Jan． 2019 సત్నెడ్త ひునుતు
（COMMON TO ALL BRANCHES）
Time： 2 hrs ．］

గుอほనొగెళง

 ల్రాఁణియున్ను అందరా A，B，C అథటా D యున్ను उట్టిల్లచంత చడర్యంకృాగ గురుతినులుదు అభ్యథిణయు జటాబ్ద్రియీూగిరుత్తది．

 ఱ్రల్నెగ ఎరడు లుత్తరఱస్ను గురుతినుల్రుదు అఱూన్య．
5．ఎల్ల లుత్తరగళన్ను నిటుగి ఒదగిసెలాద ఓ．ఎం．ఆరో లుత్తర ఱత్రిశేయు దలళియు టిలe？చఱ్టు అథలా నిలి రారింయు బలలాఱలయింటా ङన్నినింద గురుతు టూరడబొలzు．

1．ర్రిల సిధ్ధలింగయ్యునबర＇బిల్బియు దండు＇శฝనదల్లి చండుబరుబె అంర ：
అ）సెఱూజద సుస్థి
బ）ల్రెలముద రత్యుత

డ）దలితర శనసు

అ）సెबాణజ్ఞ
బ）ఙూమురస
モ）అల్లఱుత్రుభు
డ）బసెటణణ

అ）అరిరినేచంంటా
బ）అథణ
モ）అ戸జల戸ుర
డ）चંอళ్ళిగอల

4．＇శ్రిల సెంగిงళ్ళి రాయుణ్ణ＇యోరరు？
అ）అద్భుత భอ๔ణซరర
బ）ఎందిఱూగధరిగి సंలిదబను
ఈ）బ్యాంశగళిగ बిలeశ దూడిదటసు

అ）Шుळ
బ）ळరిळఠర
モ）ฝొుళoల
డ）ఫిట్టిలా

అ）బळురుంటియోరగిది
బ）ฝణణణరంజితదాగిది
₹）జిల్రంతఱాగిదా
๘）టొలలిన ఎల్ల区ు

అ）స్టెట్ట్ ఱూరితి
బ）నెలర నిరుంఱణ
モ）సౌజన్య
డ）ฝొలలిన ఎల్లవు

అ）నుฝొణદ నుంధి
బ）टెటణణ ధిలఖ゙ణ సెంధి
₹）రాజయง๖లగ శుంధి
డ）టృద్ధి సంధి

అ）₹ందాభూర
బ）షొっథనంబిశ

డ）డుతిలయు ద్పిలఁష

అ）శొอ○もீణ
బ）బడఁణ
モ）उౌంも゙ణ
డ）షొండాణ

అ）భゝっత च0ల
బ）రాజయృงeగ ซ๐ల
₹）యుఱుగంండ ซ๐ల
డ）రాळు ซமల

అ）ฝణణణ జిత్ర
బ）భాయీర జిత్ర
ซ）త్లోల జిత్ర
๘）ఔలన జిత్ర

13．＇బొఠ్ణొ ळజ్బు＇ఱదద సెరియోరద అథణ：
అ）రౌงఎట్టిగగ బిణ్ణి ळజు

₹）ळiంగళుबుదు
డ్ రాగిఱుద్దిగగ బిซ్ణ

Ver－D 2 of 4

బ) ஹు8ిళా మిలసలాళ
ళ) సెటూరనతేగంగి ఔళుతెళి
๘) శనసిన డుదుฝె
15. క్రిల 'బందాల నటాజో' యీలరు?
అ) గులబగంఁద సెంఘి సెంతేరు
బ) బ్రిటిలరింద లుంబళి లుడిదబరు
ఈ) बజజ్ర ब్యాఱురిగఆง
๘) గణి ఛణి

అ) ఛ్పని సెంఱత్తు
బ) సెంంయృలజని
も) నిదాలఃపన
డ) చంఠదాన

అ) ఆనె దంఠ నుంగ్రळణొ
బ) వొడ్డ్రగ శ్రురితు అధ్యయున

డ) कులి ఎిలే్ష

అ) बణంદ ర్రથు Шధ్ధి
బ) జอతియయత゙
₹) ఱొఢ నంబిః
๘) టుळలత్క గంంధిజియుబెర ఱోల్యగళిగి ఒదగిరుట అఎై్థెయున్ను
 యూరగిడి?
అ) ఐిడంబసొ
బ) నాటహ

డ) తంత్రజ్ఞ్ఞన లాలున

అ) రిస్తు
బ) ఱలలర్బూత్ల దిరిసు

డ) ฝొలలలి ఎల్లఖు

అ) $ు: ఖ$
బ) నలిథు

డ) ఒలథ్ర

అ）उంత్రజ్ఞ్ఞన లలఖన
బ）ฝినెతలద లాలఖన
も）๔త్రిซo అంもణ
డ）నలటも

23．శ్రిల పి．లంశోలశ＇గుబ్బఙ్చిగండు＇లాననదల్లి జింతిసిరుఱ్రదు ：
అ）భట్టెంగిగళ బదుళు
బ）దిలనతియు బదుళు
Ғ）న్పుంతిశొయు బదుశు
ఱ）అసేటూనతేయు బదుచు

24．＇జన＇యూఠ లింగ
అ）స్తృ $ల$ లింగ
బ）ఱుల్లింగ
₹）అలింగ
డ）నఱుంసేలింగ

25．＇అంబిళుతనయుదత్త＇ซరట్యనాఱుద ఈమి ：
అ）ద．రర．బొలంద్రి
బ）శా．బి．లుట్టెల్టు

అ）\cap
బ）e
モ） 2
ढ）

అ）ధలరటాడద
బ）బొంగళృరిన
モ）నిస゙గణదద
డ）బిళగంలియు
 ळొళిద్దు：

బ）ఎఱ่

అ）దులినాడు
బ）₹రాబెళి
モ）ఱురుభూమి
๘）దిృడ్ఠయగగర త్రుదాలర

అ）ఆలงอఒజ゙నియుల్లి సత్యనిట్ట్ట．

₹）భอఱణద శురితు తయూరరి

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Kannada Kali (COMMON TO ALLBRANCHES)

Time: 2 hrs.]
Máx. Marks: 30

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries CNE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalici.
5. Damaging/overwriting, use of whiteners on the OMR sheets are strictiy prollibited.

Note : Fill in the blank by translating the given English word to Kannada.
[From Questiolil No: 1 to 5]

1. He
a) NAnu
b) Neenu
c) Avanu
d) AvaLu
2. When:
a) Yaauu
b) Yaawaga
c) Yelli
d) Yaake
3. Teacher:
a) HuDuga
b) Manushya
c) Shikshaka/ki
d) Shishya
4.

a) tarakari
b) takararu
c) tavarurt
d) tamota
5. Garden \qquad
b) Shaale
a) Mane
d) Baagilu
c) TooTa

Note: Substitute the words from the following each sentence in appropriate place
[From Q No. 6 to 8]
6. naanu uu maaDu
a) inaaDuiteris
b) maaDideya
c) maalisu
d) maaDi
Ver-A 1 of 3
7. Nampa manege baa ?
a) Baruttiya
b) Randi
c) BeDa
d) Baru
8. Nanna hattira Kutka.
a) KuLituko
b) KeODr
c) Kındru
d f_{5} Nome.

Note: Write the English word for given Kannada word [Froniono. 9 to 12]
9. HaLe
a) New
b) Now
c) Not
d) Old
10. Kurci
a) Table
b) Book
c) Chair
d) Pen
11. GaNita
a) Physics
d) Biology
c) Mathernatics
d) English
12. Shale
a) Home
b) School
c) Office
d) Room.

Note : Fill in the blanserigosing the right werdfrom the grounbelow :
13. nonage minna sahavaasa khanDitaa
a) BeDa
b) Beka
c) Ide
d) 111 a .

Note : Translate the following Kannada question into English.
[from question No. 14 to 15]
14. Niivu yaara?
a) who is this? b) whatis this?
9.) who are you?
d. what is there?
15. Id ur Enu?
a) who is this?
b) what is this?
c) who are vault
d) what is there?

Note : Translate the following English words to Kannada [from Q Ne. 16 to 20]
16. Near
a) Swalpa
b) hattira
c) heege
d) hose
17. Shop
a) AngaDi
b) dukan
c) kente
d) Mane.
18. See
a) NooDu
b) MaaDu
c) BiDu
d) IDu
19. Moon
a) candra
b) Surarya
c) Naksatr
d) Boomi
20. Child
a) Maanav
b) Magu
c) MahiLe
d) HeNNu

Note: Translate the Kannada word into English. [From Q No. 21 to 30]
21. Meenu
a) Animal
b) Fish
c) Crow
d) Owl
22. Nayee
a) Pig
c) Dog
b) Cow
d) Cat
23. Aat
a) Se
b) Come
c) Go
d) Play
24. Mana
a) Home
c) Pen
b) Sallool
d) Mind
25. Nanu
a) I
c) We
b) You
d) He
26. Maga
a) Father

O
b) Sister
c) Daugher
d) Son,
27. सá
a) Go
c) Visit
b) Sit
d) Come
28. Kaagad
a) Chair
c) Mouce
b) Computer
d) Paper
29. Avanu
a) He
c) It
b) She
d) They
30. Aangla
a) Kannada
c) Marath
b) English
d) Urdu.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

INSTRUCTIONS TO THE CANDID ITES

1. Answer all the thirty questions, each question carries GNE mark.
2. Use only Black ball point pen for writing / dankening the circles.
3. For each question, after selecting your amswer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the OMR sheets are strictly prolibited.

Note : Translate the following English words to Kannada [from Q No. 1 to 5]

1. Near
a) Swalpa
b) Hattira
c) heege
d) hosa
2. Shop
b) dukan
a) Angabi
0
c) kante
d) Mare.
3. Sce
a) NooDu
a) $B i D u$
4) MaaDu
(1) Du
4. Moon
a) ,andra
b) Suurya
c) Naksatna
d) Boomi
5. Child
a) Maanava
b) Magu
c) MahiLe
d) HeNNu

Note : Write the Engfish word for given Kannada word [From Q No. 6 to 9]
6. HaLe
a) New
b) Now
c) Not
d) Old

